Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Sci Pollut Res Int ; 2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-2263669

ABSTRACT

Pakistan is included in top 50 countries which are estimated to face serious agriculture and food deficiency related challenges due to the worldwide pandemic coronavirus 2019 (COVID-19). The aim of this study was to evaluate the effects of COVID-19 on food supply chain and agriculture in Punjab, Pakistan, by using space-time scan statistic (STSS). A survey was conducted at 720 points in different districts of the province. The STSS detected "active" and emerging clusters that are current at the end of our study area-particularly, 17 clusters were formed while adding the updated case data. Software ArcGIS 10.3 was used to find relative risk (RR) values; the maximum RR value was found to be 42.19 and maximum observed cases 53,265 during June 15-July 1, 2020. It was not always necessary that if the number of active cases in Punjab increased, there should be higher relative risk for more number of districts and vice versa. Due to the highest number of cases of COVID-19 and RR values during July, mostly farmers faced many difficulties during the cultivation of cotton and rice. Mostly farmers (72%) observed increase in prices of inputs (fertilizers and pesticides) during lockdown. If the supply chain of agriculture related inputs is disturbed, farmers may find it quite difficult to access markets, which could result in a decline in production and sales of crops and livestock in study area. It is suggested that to protect the food security and to decrease the effect of the lockdown, Punjab government needs to review food policy and analyse how market forces will respond to the imbalanced storage facilities and capacity, supply and demand and price control of products. The findings of this study can also help policy-makers to formulate an effective food security and agriculture adaptation strategy.

2.
Environ Sci Pollut Res Int ; 2023 Feb 11.
Article in English | MEDLINE | ID: covidwho-2241285

ABSTRACT

Coronavirus disease (COVID)-19 is a viral and transferable disease caused by severe respiratory syndrome-coronavirus-2. It can spread through breathing droplets in human beings. It caused 5.32 million deaths around the world at the end of 2021. COVID-19 has caused several positive impacts as well, such as a reduction in air, water, and noise pollution. However, its negative impacts are by far critical such as increased death rate, increased release of microcontaminants (pesticides, biocides, pharmaceuticals, surfactants, polycyclic aromatic hydrocarbons (PAHs), flame retardants, and heavy metals), increased biomedical waste generation due to excessive use of safety equipment and its disposal, and municipal solid waste generation. Environmental pollution was significantly reduced due to lockdown during the COVID-19 period. Therefore, the quality of air and water improved. COVID-19 affected all sections of the population, particularly the most vulnerable members of society, and thus pushed more people into poverty. At the world level, it increased risks to food safety by increasing prices and lowering revenues, forcing households to reduce their food consumption in terms of quantity and quality. COVID-19 also upset various exercises e.g., horticulture, fisheries, domesticated animals, and agribusiness hence prohibiting the development of merchandise for poor-country ranchers. Most of the patients can self-recover from COVID-19 if they do not have any other diseases like high blood pressure, diabetes, and heart problems. Predictably, the appropriate execution of the proposed approaches (vaccination, wearing face masks, social distancing, sustainable industrialization) is helpful for worldwide environmental sustainability.

3.
Environ Sci Pollut Res Int ; 29(35): 52618-52634, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1971789

ABSTRACT

As a result of extreme modifications in human activity during the COVID-19 pandemic, the status of air quality has recently been improved. This bibliometric study was conducted on a global scale to quantify the impact of the COVID-19 pandemic on air pollution, identify the emerging challenges, and discuss the future perspectives during the course of the ongoing COVID-19 pandemic. For this, we have estimated the scientific production trends between 2020 and 2021 and investigated the contributions of countries, institutions, authors, and most prominent journals metrics network analysis on the topic of COVID-19 combined with air pollution research spanning the period between January 01, 2020, and June 21, 2021. The search strategy retrieved a wide range of 2003 studies published in scientific journals from the Web of Sciences Core Collection (WoSCC). The findings indicated that (1) publications on COVID-19 pandemic and air pollution were 990 (research articles) in 2021 with 1870 citations; however, the year 2020 witnessed only 830 research articles with a large number 16,600 of citations. (2) China ranked first in the number of publications (n = 365; 18.22% of the global output) and was the main country in international cooperation network, followed by the USA (n = 278; 13.87% of the global output) and India (n = 216; 10.78 of the total articles). (3) By exploring the co-occurrence and links strengths of keywords "COVID-19" (1075; 1092), "air pollution" (286; 771), "SARS-COV-2" (252; 1986). (4) The lessons deduced from the COVID-19 pandemic provide defined measures to reduce air pollution globally. The outcomes of the present study also provide useful guidelines for future research programs and constitute a baseline for researchers in the domain of environmental and health sciences to estimate the potential impact of the COVID-19 pandemic on air pollution.


Subject(s)
Air Pollution , COVID-19 , Bibliometrics , COVID-19/epidemiology , Pandemics , Publications
4.
Chemosphere ; 275: 129968, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1085576

ABSTRACT

A novel coronavirus (2019-nCoV) is an acute life-threatening disease, emerged in China, which imposed a potentially immense toll in terms of public health emergency due to high infection rate and has a devastating economic impact that attracts the world's attention. After that, on January 30, 2020, it was officially declared as a global pandemic by World Health Organization (WHO). The International Committee on Taxonomy of Viruses (ICTV) recognized it as a Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and the disease named Coronavirus Disease-19 (COVID-19). Several studies have been ameliorated the active role of COVID-19 transmission, etiology, pathogenicity, and mortality rate as serious impact on human life. The symptoms of this disease may include fever, fatigue, cough and some peoples are severely prone to gastrointestinal infection. The elderly and seriously affected peoples are likely concerned with serious outcomes. In this review, we mainly aimed to provide a benchmark summary of the silent characteristics and findings of some candidates for antiviral drugs and immunotherapies such as plasma therapy, cytokine therapy, antibodies, intravenous immunoglobulin, and pharmaceutical health concerns that are related to this disease.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Aged , China , Humans , Pandemics , SARS-CoV-2
5.
Chemosphere ; 272: 129809, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1056443

ABSTRACT

Several major cities that witnessed heavy air pollution by particulate matter (PM2.5) concentration and nitrogen dioxide (NO2) have contributed to high rate of infection and severity of the coronavirus disease (COVID-19) pandemic. Owing to the negative impact of COVID-19 on health and economy, it is imperative to predict the pandemic trend of the COVID-19 outbreak. Pakistan is one of the mostly affected countries by recent COVID-19 pandemic in terms of COVID-cases and economic crises. Like other several Asian countries to combat the virus impacts, Pakistan implemented non-pharmacological interventions (NPI), such as national lockdowns. The current study investigates the effect of major interventions across three out of four provinces of Pakistan for the period from the start of the COVID-19 in March 22, 2020 until June 30, 2020, when lockdowns were started to be eased. High-resolution data on NO2 was recorded from Sentinel-5's Precursor spacecraft with TROPOspheric Monitoring Instrument (Sentinel-5P TROPOMI). Similarly, PM2.5 data were collected from sampling sties to investigate possible correlation among these pollutants and COVID-19. In addition, growth and susceptible-infected-recovered (SIR) models utilizing time-series data of COVID-19 from February 26 to December 31, 2020, with- and without NPI that encompass the predicted number of infected cases, peak time, impact on the healthcare system and mortality in Pakistan. Maximum mean PM2.5 concentration of 108 µgm-3 was recorded for Lahore with the range from 51 to 215 µgm-3, during strict lockdown (L), condition. This is three times higher than Pak-EPA and US-EPA and four times for WHO guidelines, followed by Peshawar (97.2 and 58 ± 130), Islamabad (83 and 158 ± 58), and Karachi (78 and 50 ± 140). The majority of sampling sites in Lahore showed NO2 levels higher than 8.75E-5 (mol/m2) in 2020 compared to 2019 during "L" period. The susceptible-infected-recovered (SIR) model depicted a strong correlation (r) between the predicted and reported cases for Punjab (r = 0.79), Sindh (r = 0.91), Khyber Pakhtunkhwa (KPK) (r = 94) and Islamabad (r = 0.85). Findings showed that major NPI and lockdowns especially have had a large effect on minimizing transmission. Continued community intervention should be undertaken to keep transmission of SARS-CoV-2 under control in cities where higher incidence of COVID-19 cases until the vaccine is available. This study provides a methodological framework that if adopted can assist epidemiologist and policy makers to be well-prepared in advance in cities where PM2.5 concentration and NO2 levels are already high in order to minimize the potential risk of further spread of COVID-19 cases.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Coronavirus , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Pakistan/epidemiology , Pandemics , Particulate Matter/analysis , SARS-CoV-2
6.
Chemosphere ; 271: 129584, 2021 May.
Article in English | MEDLINE | ID: covidwho-1014401

ABSTRACT

Information on the spatiotemporal variability of respirable suspended particulate pollutant matter concentrations, especially of particles having size of 2.5 µm and climate are the important factors in relation to emerging COVID-19 cases around the world. This study aims at examining the association between COVID-19 cases, air pollution, climatic and socioeconomic factors using geospatial techniques in three provincial capital cities and the federal capital city of Pakistan. A series of relevant data was acquired from 3 out of 4 provinces of Pakistan (Punjab, Sindh, Khyber Pakhtunkhwa (KPK) including the daily numbers of COVID-19 cases, PM2.5 concentration (µgm-3), a climatic factors including temperature (°F), wind speed (m/s), humidity (%), dew point (%), and pressure (Hg) from June 1 2020, to July 31 2020. Further, the possible relationships between population density and COVID-19 cases was determined. The generalized linear model (GLM) was employed to quantify the effect of PM2.5, temperature, dew point, humidity, wind speed, and pressure range on the daily COVID-19 cases. The grey relational analysis (GRA) was also implemented to examine the changes in COVID-19 cases with PM2.5 concentrations for the provincial city Lahore. About 1,92, 819 COVID-19 cases were reported in Punjab, Sindh, KPK, and Islamabad during the study period. Results indicated a significant relationship between COVID-19 cases and PM2.5 and climatic factors at p < 0.05 except for Lahore in case of humidity (r = 0.175). However, mixed correlations existed across Lahore, Karachi, Peshawar, and Islamabad. The R2 value indicates a moderate relationship between COVID-19 and population density. Findings of this study, although are preliminary, offers the first line of evidence for epidemiologists and may assist the local community to expedient for the growth of effective COVID-19 infection and health risk management guidelines. This remains to be seen.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Humans , Pakistan/epidemiology , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , Socioeconomic Factors
7.
Ann Med Surg (Lond) ; 60: 5-8, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-844221

ABSTRACT

Covid-19 has adversely impacted the health care organizations by over burdening with Covid patients and suspending the elective surgeries and clinics. Hospitalization during pandemic may increase health cost of patients for elective and emergency procedure due to extra cost of covid testing and isolation. A single center retrospective study was conducted to quantify losses due to postponement of elective surgeries and extra cost for procurement of PPEs. The secondary objective was to see the effect of Covid -19 on the total costs of inpatient care during Covid era. PATIENT AND METHOD: We included all the patients admitted in orthopedic section for operative intervention of fractures and elective procedures from January 1, 2020 to May 31, 2020. We divided this period into two halves; the first half was from January first to March 15 named as PreCovid Era and second half was from March 16, to May 31, 2020, termed as Covid Era. The total number of trauma procedures and elective procedures were compared in both eras. We compared six procedures each from upper and lower limit for cost analysis and length of stay. We also analyzed the extra cost for procurement of PPEs. RESULTS: A total 625 patients were admitted during study period; 417 in precovid and 208 in covid era. There was 50% reduction in patients admissions during Covid era. There was no statistically significant difference in age and gender of both groups. A total of 840 (591in preCovid era and 251 in Covid era) procedures were performed on these 625 patients. Elective and emergency procedures were significantly reduced in Covid era. There was 55.7% drop in the collective revenue generated in covid era as compared to that of Precovid era. The average length of stay was decreased in Covid era. No statistically significance difference was found in inpatient hospital charges of both groups except for two procedures ankle and proximal humeral fractures; that was significantly reduced in Covid era. There was significantly increase in use of PPE in covid era. CONCLUSION: The financial income of our service decreased more than 55% due to postponement of elective work. The number of elective and procedures related to musculoskeletal trauma also decreased. The cost for inpatient care did not increase during covid era. There was significant reduction in inpatient hospital stay during covid era. The hospital management had to spent additional expenses on procurement of PPEs.

SELECTION OF CITATIONS
SEARCH DETAIL